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Abstract
Analytical expressions for the vibronic states and energy spectrum of the
icosahedral G ⊗ (g ⊕ h) Jahn–Teller system are derived. From these states,
expressions for first- and second-order vibronic reduction factors are determined
as a function of the strengths of the coupling of the G orbital to the g and h

modes of vibration. The possibility of the vibronic ground state being a singlet
A state, rather than the G state that would be expected in the absence of vibronic
coupling, is explored. The reduction factors obtained provide a convenient basis
for the modelling of spectra involving some of the excited states of the fullerene
molecule C60 and related ions.

1. Introduction

Electron–phonon interactions, via the Jahn–Teller (JT) effect, can have a strong influence on
the electronic states of molecules and ions. However, JT effects involving an orbital quadruplet
G have received little attention in the literature, despite the fact that the G quadruplet is an
excited state of the C±

60 molecules and probably also the ground state of both C+
80 and the cage

isomer of C+
20 [1], and of Si+13 clusters [2]. Furthermore, it has become clear in recent years

that the electron–phonon interaction plays an important role in understanding many of the
properties of these and other fullerene molecules.

There are five irreducible representations (irreps) in the icosahedral group Ih, namely a
singlet A, triplets T1 and T2, a quadruplet G and a quintet H [3–6]. A study of the products of
the irreps shows that six JT couplings need to be considered in Ih symmetry. Those JT effects
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involving only single modes are written in the form � ⊗�, where � is the electronic state and
� is the vibrational state. The possible JT effects are thus T1 ⊗ h, T2 ⊗ h, G ⊗ g, G ⊗ h,
H ⊗ g and H ⊗ h. However, coupling to more than a mode of a single symmetry is possible.
In particular, the G orbital can couple to both g and h vibrations in a G ⊗ (g ⊕ h) JT effect.
G ⊗ g and G ⊗ h can be considered as subsystems of the more general G ⊗ (g ⊕ h) case.

It appears that the first example of G states studied in any detail involved icosahedral
structures of boron [7–9]. In 1978, Khlopin et al [10] analysed a number of the simpler
icosahedral systems from a theoretical point of view including the G ⊗ h subsystem. Other
theoretical work has since been undertaken by Pooler [6] for the regime in which the g and h

modes were equally coupled, and by Ceulemans and Fowler [1] who obtained highly significant
results from an analysis of the adiabatic potential energy surface (APES) for the G ⊗ (g ⊕ h)

problem. Subsequently, Cullerne and O’Brien [11] discussed the phases and topography of
the lowest APES for the same system. These issues and their context are described in the book
of Chancey and O’Brien [12].

An important application of JT theory relates to effective Hamiltonians that can be
constructed to model the effects of perturbations such as spin–orbit coupling, strain and
magnetic fields. RFs are introduced as parameters in an effective Hamiltonian so that an
electronic perturbation V can be described in terms of a purely electronic Hamiltonian. The
idea of RFs in JT systems was first proposed by Ham in 1965 [13] who showed that a dynamic
JT effect can cause large changes in the magnitudes of some matrix elements of electronic
operators. First-order RFs arise when V occurs once in a perturbation calculation; second-
order RFs arise when V occurs twice. It is well known that second-order RFs can become
particularly important in some cases of strong coupling. They introduce additional terms
in the resultant effective Hamiltonian and, because the effect of the first-order terms can be
significantly reduced, the contributions of the second-order RFs can then dominate. Thus both
first- and second-order RFs need to be calculated.

RFs implicitly incorporate the effect of the phonons into the electronic terms which
increases the electron effective mass. This in turn contributes significantly to reductions in
the energy gaps in the electron energy spectrum. This spectrum is the main architect for the
modelling of spectroscopic data. Because the RFs contain the effects of the vibronic couplings,
essential physics can be bypassed if the RFs are simply regarded as free parameters adjusted
to fit experimental data rather than as important real physical parameters in their own right.
It appears that the only calculations of RFs for the orbital quadruplet are those given by [14]
which are for the limit of strong vibronic coupling.

The object of this paper is to analyse the G⊗ (g ⊕h) JT system and calculate the RFs for
this system and its subsystems covering all ranges of coupling strengths to the two modes. The
methodology to be used here follows that described by the authors for the analytical calculation
of the first- and second-order RFs for the T ⊗h [15] and H ⊗(g⊕h) JT systems [16], although
the nature of the high symmetries involved means that application to this system is far from
trivial. It is sufficient for our purposes here to limit the discussion to linear JT interactions
(in which the normal-mode coordinates enter the interaction in linear fashion) since these are
capable of illustrating the general features of vibronic couplings considered in this paper.

2. The theoretical model

A good starting point for the analysis of JT systems is to analyse the ground APES. In some
other cases, there is a trough of minimum-energy points, but in most cases the surface contains
a number of distinct wells (minima). In very strong coupling, a ‘static’ picture is appropriate
in which the motion consists of vibrations in these wells. However, when the barriers between
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the wells are not infinite, a dynamic picture holds and tunnelling between equivalent wells
will occur. Consequently, the prevailing degeneracy on the vibronic states is completely or
partially lifted and the resulting vibronic states, transforming with the required symmetry, are
linear combinations of the states localized in the wells.

One analytical method in which wells can be generated is the shift transformation (ST)
method [17] with the positions of the wells fixed using a method developed by Öpik and
Pryce [18]. Projection operator techniques can then be used to obtain symmetry-adapted
combinations of the well states that allow for tunnelling between the wells. These procedures
have already been used successfully to determine the symmetry-adapted ground and tunnelling
states for the icosahedral T1 ⊗ h [19] and H ⊗ (h ⊕ g) [20] JT systems. Symmetry-adapted
vibronic states for the G ⊗ (g ⊕ h) JT system will now be determined. This procedure is
similar in some respects to that used by Ceulemans and Fowler [1] who concentrate on issues
concerning the curvature of the APES. The energies associated with the vibronic states will then
be calculated and the tunnelling splitting associated with each type of minimum determined.
Such a calculation is important because the theoretical results can then be compared directly
with experimental transition energy data.

Before proceeding, we comment that only one vibration of each symmetry type will be
considered. In real systems, a number of modes of the same symmetry would be coupled. Their
inclusion would lead naturally towards the development of a more realistic multimode model.
However, on the basis of previous multimode work [21,22], it can be shown that the extremal
properties of this surface are independent of the number of fourfold- and fivefold-degenerate
modes included. Much of the behaviour of the system can be obtained from consideration of
a single effective mode only. Furthermore, the experimental data available are not sufficiently
sophisticated to be of use in distinguishing multimode effects at the present time.

It is now necessary to consider the model Hamiltonian for the icosahedral G⊗ (g ⊕h) JT
system. In order that uniformity exists between this and previously published work, particular
conventions will be adopted. In order to conform with the work by Ceulemans and Fowler [1],
we follow Boyle and Parker [23] and define a twofold axis of quantization together with a
coordinate system in which the irreducible representation has canonical components γ labelled
a, x, y, z for G states and θ , ε, 4, 5, 6 for H states. Adopting these conventions and using the
tables of Fowler and Ceulemans [24] for the Clebsch–Gordan (CG) coefficients, the required
model Hamiltonian is

H =
∑
�γ

(
P 2

�γ

2µ
+

1

2
µω2

�

)
Q2

�γ + Hint (1)

where Q�γ and P�γ denote the JT-active displacement coordinates and their conjugate
momenta respectively, with γ running over the components of the mode � (=G and H ),
µ is the mass of each of the nuclei at the corners of the icosahedron and ω� is the mode
frequency. Also Hint is the linear vibronic interaction Hamiltonian given in matrix form with
respect to the basis defined above by

Hint = Vg

2
√

3




3Qa −Qx −Qy −Qz

−Qx −Qa −√
5Qz −√

5Qy

−Qy −√
5Qz −Qa −√

5Qx

−Qz −√
5Qy −√

5Qx −Qa




+
Vh√
15




0
√

5Q4

√
5Q5

√
5Q6√

5Q4 −√
2(Qθ − √

3Qε) −Q6 −Q5√
5Q5 −Q6 −√

2(Qθ +
√

3Qε) −Q4√
5Q6 −Q5 −Q4 2

√
2Qθ


 (2)
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where Vg and Vh are the linear coupling constants associated with G and H modes respectively.
Following the transformation method developed in [17], a unitary transformation of the

form

U = exp

(
i
∑
� γ

α�γ P�γ

)
(3)

is introduced and applied to the Hamiltonian H. This displaces the origin of the coordinate
Q�γ to (Q�γ − α�γ h̄) and transforms the Hamiltonian H such that

H̃ = U−1HU = H̃1 + H̃2 (4)

where H̃1 does not contain any P�γ s or Q�γ s, and hence no phonon operators. H̃2 contains
all the remaining terms. It follows that H̃1 is a good Hamiltonian for determining the ground
states of the system in strong coupling.

The energy minimization procedure of Öpik and Pryce [18] is now applied to H̃1. It is found
that the lowest-energy points can be either tetrahedral (T ) or trigonal (D3) minima, depending
upon the values of the coupling constants. The electronic eigenstates and JT stabilization
energies are exactly equivalent to those obtained by Ceulemans and Fowler [1] and given in
their table 3. The minima in T correspond to the G ⊗ g subsystem because no coupling to the
h modes occurs in this case. They form what has been called the α-orbit [1]. In terms of the
coupling constant defined in this paper, the energy of the T points is

E
(g)

JT = −3

8

V 2
g

h̄µω2
g

. (5)

The T wells are minima when the g mode is dominant such that E
(g)

JT < E
(h)
JT < 0, where

E
(h)
JT = − 3

10

V 2
h

h̄µω2
h

. (6)

The D3 points are saddle points in this case.
The D3 points involve both sets of modes in the G⊗(g⊕h) system, and form the so-called

β-orbit [1]. The energy of these points is

2
27E

(g)

JT + 25
27E

(h)
JT . (7)

These are minima (and the T points are saddle points) when the h mode is dominant
(E(h)

JT < E
(g)

JT < 0). Clearly, in the case where the JT stabilization energies E
(g)

JT and E
(h)
JT

are equal, neither mode is more stable; this situation corresponds to the degenerate coupling
case when the JT distortion space becomes an equipotential minimal energy trough [25–27].
In addition to the minima mentioned above, two other sets of extrema occur having trigonal
and dihedral symmetry are present. As they always correspond to saddle points, they do not
feature in calculations leading to the derivation of the vibronic tunnelling states or the energies
associated with these states.

3. Analytical form of the vibronic states

3.1. Basis states

As outlined above, the required vibronic ground states are derived from the eigenstates of
H localized in either the tetrahedral or trigonal wells as appropriate. In general, the ground
vibronic state in well k is written in the form |ψk; 0〉, where ψk corresponds to the ground
electronic state in well k, with ‘0’ indicating that the phonons are all in their ground state.
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These states may be transformed back to the original space by operating on them with the
unitary operator U = Uk appropriate to well k, after substitution of the suitable values of α�γ .
Hence, the untransformed well state becomes

|ψ ′
k; 0〉 = Uk|ψk; 0〉 (8)

which is automatically vibronic as a consequence of the unitary transformation which contains
phonon operators. It is now necessary to take symmetrized combinations of these well states
to obtain states appropriate for finite coupling. Such a linear combination of states may be
constructed using projection operator techniques. The basic theory of projection operators is
described in detail in [28].

3.2. Vibronic ground states corresponding to the tetrahedral wells

Following the procedures outlined above, the symmetry-adapted vibronic ground states
corresponding to the tetrahedral wells (and labelled by the superscript T ) have symmetries
A and G. They may be written as specific combinations of the orbital states ψk in the wells.
The wells will be labelled A–E, and the ψk for these wells are given in column 1 of table 3
in [1] The symmetry-adapted states have the form

|AT
a 〉 = 1√

5
NT

A [|A′; 0〉 + |B ′; 0〉 + |C ′; 0〉 + |D′; 0〉 + |E′; 0〉]

|GT
a 〉 = 1

2
√

3
NT

G[4|A′; 0〉 − |B ′; 0〉 − |C ′; 0〉 − |D′; 0〉 − |E′; 0〉]

|GT
x 〉 = 1

2NT
G[−|B ′; 0〉 − |C ′; 0〉 + |D′; 0〉 + |E′; 0〉]

|GT
y 〉 = 1

2NT
G[−|B ′; 0〉 + |C ′; 0〉 − |D′; 0〉 + |E′; 0〉]

|GT
z 〉 = 1

2NT
G[−|B ′; 0〉 + |C ′; 0〉 + |D′; 0〉 − |E′; 0〉]

(9)

where the NT
i are normalization factors for vibronic states of symmetries A and G given by

NT
A = (1 + 4ST

12)
−1/2

NT
G = (1 − ST

12)
−1/2

(10)

respectively. ST
12 is the overlap between any two of the vibronic ground states in different wells

given by

ST
12 = − 1

4 exp(− 15
16k2

g) (11)

where

kg = −Vg/(2µh̄ω3
g)

1/2. (12)

3.3. Vibronic ground states corresponding to the trigonal wells

Following a similar procedure, the symmetry-adapted vibronic ground states have symmetries
A, G and H . They may be written as specific combinations of the orbital states ψk in the
trigonal wells. The wells are labelled a–j , and the ψk are given in column 2 of table 3 in [1].
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The required symmetry-adapted vibronic ground states for the trigonal wells are

|AD3
a 〉 = 1√

10
N

D3
A [|a′; 0〉 + |b′; 0〉 + |c′; 0〉 + |d ′; 0〉 + |e′; 0〉 + |f ′; 0〉

+ |g′; 0〉 + |h′; 0〉 + |i ′; 0〉 + |j ′; 0〉]
|GD3

a 〉 = 1√
60

N
D3
G [−2(|a′; 0〉 + |b′; 0〉 + |c′; 0〉 + |d ′; 0〉 + |e′; 0〉 + |f ′; 0〉)

+ 3(|g′; 0〉 + |h′; 0〉 + |i ′; 0〉 + |j ′; 0〉)]
|GD3

x 〉 = 1√
12

N
D3
G [2(|a′; 0〉 − |b′; 0〉) + ( −|g′; 0〉 − |h′; 0〉 + |i ′; 0〉 + |j ′; 0〉)]

|GD3
y 〉 = 1√

12
N

D3
G [2(|c′; 0〉 − |d ′; 0〉) + ( −|g′; 0〉 + |h′; 0〉 − |i ′; 0〉 + |j ′; 0〉)]

|GD3
z 〉 = 1√

12
N

D3
G [2(|e′; 0〉 − |f ′; 0〉) + ( −|g′; 0〉 + |h′; 0〉 + |i ′; 0〉 − |j ′; 0〉)]

|HD3
θ 〉 = 1√

12
N

D3
H [ −|a′; 0〉 − |b′; 0〉 − |c′; 0〉 − |d ′; 0〉 + 2|e′; 0〉 + 2|f ′; 0〉]

|HD3
ε 〉 = 1

2N
D3
H [|a′; 0〉 + |b′; 0〉 − |c′; 0〉 − |d ′; 0〉]

|HD3
4 〉 = 1√

6
N

D3
H [( −|a′; 0〉 + |b′; 0〉) + ( −|g′; 0〉 − |h′; 0〉 + |i ′; 0〉 + |j ′; 0〉)]

|HD3
5 〉 = 1√

6
N

D3
H [( −|c′; 0〉 + |d ′; 0〉) + ( −|g′; 0〉 + |h′; 0〉 − |i ′; 0〉 + |j ′; 0〉)]

|HD3
6 〉 = 1√

6
N

D3
H [( −|e′;0〉 + |f ′; 0〉) + ( −|g′; 0〉 + |h′; 0〉 + |i ′; 0〉 − |j ′; 0〉)].

(13)

The normalizing factors N
D3
i are given by

N
D3
A = (1 + 3S

D3
12 + 6S

D3
13 )−1/2

N
D3
G = (1 − 2S

D3
12 + S

D3
13 )−1/2

N
D3
H = (1 + S

D3
12 − 2S

D3
13 )−1/2

(14)

where S
D3
12 and S

D3
13 denote two different overlaps between trigonal wells given by

S
D3
12 = − 2

3 t2T

S
D3
13 = 1

6 tT 2
(15)

where

t = exp(− 5
108k2

g)

T = exp(− 10
27k2

h)
(16)

with

kh = −Vh/(2µh̄ω3
h)

1/2. (17)

For coupling to the h mode only, S
D3
12 represents the overlap between nearest-neighbour wells

and S
D3
13 that between next-nearest neighbours. For coupling to the g mode only, this situation

is reversed.
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4. Energies of the symmetry-adapted states

The degeneracy of the vibronic basis states is partially lifted by taking the symmetry-adapted
combinations of states. The symmetry-adapted states derived in section 3 contain � ground
vibronic states and (�–�) tunnelling levels, where � is the number of wells. The energies
corresponding to these states have been obtained by evaluating all the matrix elements of
the full Hamiltonian H between all the untransformed vibronic well states in equations (9)
and (13).

4.1. Energies of the vibronic states associated with the tetrahedral wells

On evaluation of all the relevant matrix elements, we find that only two different types of
matrix element occur. Within one well, the matrix element has energy E11 given by

ET
11 = (2 − 3

4k2
g)h̄ωg + 5

2 h̄ωh (18)

while the matrix element between any next-nearest-neighbour wells is

ET
12 = ST

12[(2 − 27
16k2

g)h̄ωg + 5
2 h̄ωh]. (19)

The energies of the G and A vibronic states are then given by

ET
A = ET

11 + 4ET
12

1 + 4ST
12

ET
G = ET

11 − ET
12

1 − ST
12

.

(20)

Thus the tunnelling splitting δ = ET
A − ET

G between the A and G states is given by

δ = 5(ET
12 − ST

12E
T
11)

1 + 3ST
12 − 4(ST

12)
2
. (21)

δ is positive for all values of the coupling strength kg (and is independent of the h-mode
coupling kh). In figure 1, δ is plotted as a function of the coupling strength kg . It can be
seen that in the weak-coupling limit, when the vibrational part of the Hamiltonian dominates
the JT interaction, the A state is h̄ωg above the G ground state and corresponds to a state
with one-phonon excitation. In the strong-coupling limit, δ approaches zero exponentially as
expected through the dominant term involving the overlap S. This result is consistent with that
obtained by Cullerne and O’Brien [11] when allowance is made for the differences in signs of
the overlap and the energies of the two oscillators in neighbouring wells.

4.2. Energies of the vibronic states associated with the trigonal wells

In a similar way, the energies of the vibronic states associated with the trigonal wells may be
determined. In this case there are two distinct matrix elements of H between well states to
determine, which will be denoted by E12 and E13 (analogous to S12 and S13), as well as the
energy E11 of H within one well. We find that

E
D3
11 = 2h̄ωg(1 − 1

36k2
g) + 5

2 h̄ωh(1 − 2
9k2

h)

E
D3
12 = S

D3
12 [h̄ωg(2 − 4

27k2
g) + 5

2 h̄ωh(1 − 10
27k2

h)]

E
D3
13 = S

D3
13 [h̄ωg(2− 11

108k2
g) + 5

2 h̄ωh(1− 14
27k2

h)].

(22)
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0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

δ 
/ 

ω

kg

Figure 1. The tunnelling splitting δ as a function of the coupling constant kg associated with
vibronic states of T symmetry.

The energies of the A, G and H tunnelling states are then given by

E
D3
A = E

D3
11 + 3E

D3
12 + 6E

D3
13

1 + 3S
D3
12 + 6S

D3
13

E
D3
G = E

D3
11 − 2E

D3
12 + E

D3
13

1 − 2S
D3
12 + S

D3
13

E
D3
H = E

D3
11 + E

D3
12 − 2E

D3
13

1 + S
D3
12 − 2S

D3
13

.

(23)

The tunnelling splittings δ1 = E
D3
A − E

D3
G and δ2 = E

D3
H − E

D3
G are functions of both kg and

kh. Before proceeding, we should note that these results are only valid when the D3 points
are absolute minima. From equations (5) to (7), we can see that in the linear coupling regime
considered in this paper, this occurs for k2

h > 5k2
g/4. However, it is possible that higher-order

contributions to the vibronic coupling, such as bilinear terms, could both turn the D3 points
into minima and lower their energy below that of the T points in certain cases. Indeed, an
equivalent effect has been shown to be possible in the cubic T ⊗ (e ⊕ t2) JT system [30]. We
have therefore plotted δ1 and δ2 in figures 2 and 3 respectively as functions of both kg and kh

for both the region k2
h > 5k2

g/4 where the current results are valid and outside this region. We
have taken ωg = ωh = ω as far as the plots are concerned. It can be seen that both δ1 and
δ2 tend to zero in the strong-coupling limit, as for the tunnelling splitting with T -symmetry
wells. δ2 varies smoothly from h̄ω in weak coupling to 0 in strong coupling (to either mode).
However, the mathematical behaviour of δ1 is somewhat more surprising in both weak and
strong coupling. For illustrative purposes, we give a 2D plot of the tunnelling splitting for
kg = 0 (curve a) and kh = 0 (curve b) in figure 4, although it must be remembered that the
linear coupling results are not actually valid for the coupling represented by curve b.

The limit attained in weak coupling depends upon whether kg or kh tends to zero first. As
figure 4 shows, the limit is h̄ω if kh is set to zero, whereas if kg is set to zero, the limit is 2h̄ω.
The limit attained when approaching the origin along the boundary of the region of validity is
h̄ω. This is due to the dominance of the contributions from terms in kg . A similar dual-limit
at the origin was found previously for the H ⊗ (g ⊕ h) JT system [20]. The weak-coupling
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Figure 2. The tunnelling splitting δ1 = E
D3
A − E

D3
G as a function of both kg and kh for states

derived using the D3 points. Note that the origin (kg = kh = 0) is at the back corner (in order to
show the weak-coupling behaviour) but the axis labels are on the front edges (to be visible). The
marked ‘region of validity’ is that for which the D3 points are minimum-energy wells in linear
coupling.
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Figure 3. As figure 2 but for the tunnelling splitting δ2 = E
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G for states derived using the

D3 points.
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limits of both δ1 and δ2 can be explained by an examination of the products

G ⊗ G = A ⊕ T1 ⊕ T2 ⊕ G ⊕ H

G ⊗ H = T1 ⊕ T2 ⊕ G ⊕ 2H

H ⊗ H = A ⊕ T1 ⊕ T2 ⊕ 2G ⊕ 2H

(24)

and by considering which phonons couple to the electronic orbital states to produce the first
tunnelling states. If an electronic state of G symmetry couples to a single phonon of h

symmetry, a H electronic state can be formed from the G⊗h product shown in equation (24).
Since only one phonon is involved in this JT interaction, this state will tend to the relative
energy h̄ωh in the weak-coupling limit. Likewise, an A vibronic state can also be formed
from a G electronic state with a single g-type phonon. In contrast, an A vibronic state cannot
be formed from a single h-type phonon. Instead, two h-type phonons must couple together
with the electronic G orbital state, as described by a G ⊗ h ⊗ h JT interaction. Since two
phonons have taken part in this interaction, the relative energy of this A vibronic state in the
weak-coupling limit is 2h̄ωh, as is observed.

The strong-coupling behaviour of δ1 is even more surprising than its weak-coupling
behaviour. As figures 3 and 4 show, there is a region of coupling to the g and h modes
for which the tunnelling splitting is negative. Although this lies outside the region of validity
for the linear coupling results, it does suggest that the possibility of having a singlet ground
state cannot be ruled out for some value of vibronic coupling constants when higher-order
terms are included. Such a situation is highly significant, because it means that the presence
of vibronic coupling can alter the ground state from the quadruplet expected in the absence of
vibronic coupling to a vibronic singlet state. The only linear JT systems in which this is known
to occur are H ⊗ (g ⊕ h) [20] and its subsystem H ⊗ h [29, 31]. A ground-state crossover is
also known to be possible in the quadratic E ⊗ e JT system (as can be seen from [32] and [33])
and the T ⊗ t2 system [34].

5. The calculation of reduction factors

5.1. First-order RFs

When an electronic perturbation C�γ of symmetry � with component γ is present, the
corresponding Hamiltonian describing the perturbation within the electronic G states |Gγi

)

can be written in the form [16]

H(1)(�) =
∑

γ

W�γ C�γ (25)

where the C�γ are orbital operators and the W�γ are corresponding coefficients. The C�γ can
be expressed in terms of CG coefficients 〈�γgσj |gσi〉 by the relation [24]

C�γ =
∑
σiσj

|Gσi)(Gσj |〈�γGσj |Gσi〉. (26)

If the vibronic states derived above are written in the form |0, Gσi〉, the usual definition of a
first-order RF within the ground state is

K
(1)
GG(�) = 〈0, Gσi |C�γ |0, Gσj 〉

(Gσi |C�γ |Gσj)
= 〈0, Gσi |C�γ |0, Gσj 〉

〈�γGσj |Gσi〉 . (27)

The first-order RFs are ‘numbers’ (dependent upon the coupling strengths and frequencies)
which are independent of the components σi . As discussed in detail in [16], there are some
difficulties in using this definition when repeated representations are involved, as the RF is
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then no longer independent of the components used. This must be reflected by expressing the
RF in the form of a matrix in the effective Hamiltonian. This will be illustrated in some of the
examples given below.

In addition to the RFs acting entirely within a the ground vibronic state, non-zero ‘off-
diagonal’ matrix elements can arise between the ground vibronic state �l and one or more
of the tunnelling states �m. Such off-diagonal matrix elements for an operator C�σk

can be
written in the general form

K
(1)
�l�m

(�) ≡ 〈0, �lσi |C�σk
|0, �mσj 〉

(�lσi |C�σk
|�mσj )

. (28)

5.1.1. First-order reduction factors corresponding to the T wells. On substituting the
vibronic states given in equation (9) into the formula for the first-order RF given in equation (27)
together with tables 4 and 7 of [24], the relevant RFs are obtained. To illustrate the procedures,
we consider the RFs K

(1)
GG(T1) and K

(1)
GG(T2), choose the orbital operators L̂T1z and L̂T2z, and

use the vibronic states with σi → x, and σj → y given in equation (9), for example. Then

K
(1)
GG(T1) = 〈0Gx |L̂T1z|0Gy〉

〈T1zGy |Gx〉 = −
√

3〈0Gx |L̂T1z|0Gy〉

K
(1)
GG(T2) = 〈0Gx |L̂T2z|0Gy〉

〈T2zGy |Gx〉 =
√

3〈0Gx |L̂T2z|0Gy〉
(29)

with the orbital operators in matrix form given by

L̂T1z = − 1√
3




0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0


 , L̂T2z = 1√

3




0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0


 . (30)

We then obtain

K
(1)
GG(T1) = K

(1)
GG(T2) = −5(NT

G)2ST
12. (31)

In a similar way, the first-order RFs K
(1)
GG(H) and K

(1)
GG(G) come from evaluating

K
(1)
GG(H) = 〈0Gx |L̂Hθ |0Gx〉

〈HθGx |Gx〉 = −
√

15

2
〈0Gx |L̂Hθ |0Gx〉 (32)

with

L̂Hθ = − 2√
15




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −2


 (33)

We find that the same result is obtained for K
(1)
GG(H) as was obtained for K

(1)
GG(T1) and K

(1)
GG(T2).

In fact, we can show that the relation

K
(1)
GG(T1) = K

(1)
GG(T2) = K

(1)
GG(H) (34)

must always hold, independent of the model used, using the general theory given in [35]
and [36]. This is an example of a RF ‘sum rule’. A similar but a slightly more complicated
calculation for the remaining first-order RFs gives the result

K
(1)
GG(G) = 1

4 (NT
G)2(3 − 8ST

12) (35)

with a second sum rule

4K
(1)
GG(G) − K

(1)
GG(X) = 3 (36)
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where X ≡ T1, T2 or H . In the infinite-coupling limit, the overlap 2ST
12 becomes zero and thus

all the above RFs become zero except for K
(1)
GG(G), which has a limiting value of 3

4 . These
limiting values are all in agreement with those found in [14].

Only one non-zero off-diagonal matrix element exists which is given by

K
(1)
AG(G) =

√
3

4
(NT

G)NT
A (1 + 4ST

12). (37)

5.1.2. First-order reduction factors corresponding to the D3 wells. The calculation proceeds
as forT wells with the relevant symmetry-adapted vibronic ground states given in equation (13).
The calculations are straightforward for diagonal operators of T1, T2 and G symmetries within
the G and H vibronic states and give the result

K
(1)
GG(T1) = K

(1)
GG(T2) = 5

18 (N
D3
G )2(−3S

D3
12 + 42S

D3
13 )

K
(1)
GG(G) = 1

18 (N
D3
G )2(1 − 12S

D3
12 + 216S

D3
13 )

K
(1)
GG(H) = 5

18 (N
D3
G )2(2 − 6S

D3
12 + 18S

D3
13 )

K
(1)
HH (T1) = −K

(1)
HH (T2) = 5

√
5

9
√

2
(N

D3
H )2

(
−3

2
S

D3
12 − 6S

D3
13

)

K
(1)
HH (G) = −√

5

9
√

2
(N

D3
H )2(1 + 6S

D3
12 + 18S

D3
13 )

(38)

where the normalizing factors N
D3
� and overlaps S

D3
12 and S

D3
13 are given in section 3.

The case of operators of H symmetry within vibronic states of H symmetry is more
complicated. This is because of the repeated representation in the product of H ⊗ H (see
equation (24)). This problem is very similar to that discussed in Huang et al [16] for the
H ⊗ (g ⊕h) JT system. The first-order RF K

(1)
HH (H) takes the form of a diagonal 2 ×2 matrix

K
(1)
HH (H) =

(
K

(1)
Ha

(H) 0

0 K
(1)
Hb

(H)

)
(39)

provided that the labels a and b for the repeated representations are correctly chosen. This
occurs when the separation of the CG coefficients follows that of Fowler and Ceulemans [24].
In the present problem we find

K
(1)
Ha

(H) = 5
9 (N

D3
H )2(1 + 3

2S
D3
12 ) K

(1)
Hb

(H) = 0. (40)

The sum rules

4K
(1)
GG(G) + 5K

(1)
GG(H) − 6K

(1)
GG(T1) = 3

K
(1)
GG(T1) = K

(1)
GG(T2)

(41)

relating these RFs are readily obtained. In the case of the D3 wells, two non-zero off-diagonal
matrix elements involving the ground state are present. They are

K
(1)
AG(G) =

√
2

12
N

D3
G N

D3
A (1 + 3S

D3
12 + 6S

D3
13 )

K
(1)
AH (H) = 5

6N
D3
G N

D3
A (1 + 3S

D3
12 + 6S

D3
13 ).

(42)

In figure 5, a selection of the first-order RFs for T wells are plotted as a function of kg . It
is seen that K(1)

GG(T1), K
(1)
GG(T2) and K

(1)
GG(H) start at a value of 1 and decrease exponentially to

zero as kg increases from zero whereas K
(1)
GG(G) decreases only slightly with kg and remains

finite in strong coupling. Results for D3 wells are given in figure 6; the RFs also exhibit a
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Figure 5. The variation of the first-order RFs as a function of kg for wells of T symmetry. The
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Figure 6. The variation of the first-order RFs as a function of kh for wells of D3 symmetry and
with kg = 0.

very similar exponential decay to zero as kg increases but K
(1)
GG(G) and K

(1)
GG(Ha) decay to

finite values of approximately 0.05 and 0.55 respectively. We note that all off-diagonal RFs
are zero for zero vibronic coupling as expected; the example of K

(1)
AG(G) for T wells is shown

in figure 5. Comparison with the results given in [14] is difficult on account of differences in
the definitions of the RFs and in their separations when repeated representations are involved.

5.2. Second-order RFs

5.2.1. General principles. The calculation of second-order RFs [13] is much more
complicated than that for first-order RFs largely because a summation over an infinite set
of excited states is required. Numerical calculations for cubic systems were undertaken by
O’Brien [37], for example, and by analytical methods by Bates and Dunn [38,39] and Polinger
et al [40]. In addition, Liu et al [41] have described a general method for the derivation
of second-order RFs for the vibronic system based entirely on symmetry grounds. It was
later shown that the second-order RFs could be deduced from the evaluation of the sums of
various oscillator overlaps [42]. Equivalent calculations in icosahedral symmetry are much
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more complicated but nevertheless results have been obtained for the T1 ⊗ h JT system by
Qiu et al [15] and very recently by Huang et al [16] for the H ⊗ (g ⊕ h) JT system. On
account of the complexities involved, simplifications were made in both calculations by taking
the excited states to be the harmonic-oscillator states associated with the wells instead of the
more accurate symmetry-adapted excited vibronic states such as those derived for the T1 ⊗ h

JT system [43]. Although such a simplification is strictly only valid in the infinite-coupling
limit, we can nevertheless apply the same procedures and simplifications developed in [16] to
the G ⊗ (h ⊕ g) JT system. Again, for simplicity, we give details only for cases in which the
perturbations are the same, although the methods used can readily be extended to all cases.
The index labels p and q are needed to distinguish between repeated roots as in the case of the
first-order RFs.

On substituting equation (27) into the second-order perturbation Hamiltonian [15, 16]

H(2)(� ⊗ �) = H(1)(�)G(G)H(1)(�) (43)

where G(G) is the Green operator for the basic electronic G state including summations over
all possible phonon excitations and well states, we obtain the general expression

K
(2)
M (� ⊗ �) = 〈0, Gσi |L(2)

Mµ(� ⊗ �)|0, Gσj 〉
(Gσi |L(2)

Mµ(� ⊗ �)|Gσj)
(44)

for the second-order RF in cases in which there are no repeated roots. In equation (44), we
define

L(2)
Mµ(� ⊗ �) =

∑
γj

∑
γk

C+
�γk

G(G)C�γj
〈�γj�γk|Mµ〉 (45)

and

L
(2)
Mµ(� ⊗ �) =

∑
γj

∑
γk

C+
�γk

C�γj
〈�γj�γk|Mµ〉. (46)

where M ∈ � ⊗ �. The second-order contributions to the effective Hamiltonian are then
expressed in the form [15]

H(2)
eff (� ⊗ �) =

∑
Mµ

∑
γj

∑
γk

W +
�γk

W�γj
〈�γj�γk|Mµ〉K(2)

M (� ⊗ �)L
(2)
Mµ(� ⊗ �). (47)

Each of the repeated representations (� = H and G) must be treated in a similar way to the
first-order RFs by expressing the results in terms of a 2 × 2 matrix as in Huang et al [16].

5.2.2. Evaluation of second-order RFs. Second-order RFs have been calculated for the G⊗g

and G ⊗ h subsystems and for the G ⊗ (g ⊕ h) system separately. We consider each system
in turn beginning with the simplest G ⊗ g subsystem which involves wells of T symmetry.
Detailed calculations show that the corresponding second-order RFs can be written in the form

K
(2)
M (� ⊗ �) = − 5

h̄ωg

(ST
12)

2

(4 + ST
12)

GM(�) (48)

where the functions GM(�) are given in table 1. They are expressed in terms of the functions
f T

m = f (mXT ) with m = {1, 2} and XT = 15
16k2

g . The function f is defined by [15, 16]

f (Z) =
∞∑

n=1

Zn

(E + n)n!
. (49)
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Figure 7. Variation with kg of the second-order RFs for the G ⊗ g JT subsystem. The labelling is
defined in the text.

(E + n) corresponds to the difference in energy between an excited vibrational phonon state
containing n phonons and the ground vibrational state in units of h̄ωg . E is thus given by

E = ST
12

1 − ST
12

XT . (50)

The possible values of � and M which result in non-zero second-order RFs K
(2)
M (� ⊗ �) are

also given in table 1. The dependence of the second-order RFs on kg are displayed graphically
in figure 7, with the curves labelled as follows:

a = K
(2)
T1

(G ⊗ G), K
(2)
T2

(G ⊗ G), K
(2)
Ha

(G ⊗ G)

b = K
(2)
Ga

(G ⊗ G)

c = K
(2)
A (G ⊗ G)

d = K
(2)
T1

(T1 ⊗ T1), K
(2)
T1

(T2 ⊗ T2), K
(2)
T1

(H ⊗ H), K
(2)
T2

(H ⊗ H), K
(2)
Ha

(H ⊗ H)

e = K
(2)
Ga

(H ⊗ H)

f = K
(2)
A (T1 ⊗ T1), K

(2)
A (T2 ⊗ T2), K

(2)
A (H ⊗ H).

It is seen that the RFs labelled ‘a’ are small and positive for all values of kg whereas the other
RFs are always negative and have larger magnitudes.

The second-order RFs for the G⊗h JT subsystem which involves wells of D3d symmetry
wells have also been calculated. The allowed values of � and M which result in non-zero
second-order RFs K

(2)
M (� ⊗ �) are given in table 2 in terms of the functions f D3

m = f (mXD3)

with XD3 = 10
27k2

h. f is the function defined in equation (49), where here we have

E = 2(4 + T )T

(6 + 8T + T 2)
XD3d . (51)

The required second order RFs are thus given by

K
(2)
M (� ⊗ �) = − 1

108h̄ωh

T 2

(1 + 4
3T + 1

6T 2)
GM(�). (52)
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Table 1. The functions GM(�) used to define the second-order RFs for the G ⊗ g JT subsystem
involving T wells.

� M GM(�)

T1, T2 A f T
1 + 4f T

2
T1 5f T

1

G A 1
5 (−f T

1 + 8f T
2 )

T1, T2 −f T
1

Ga
1

10 (14f T
1 + 3f T

2 )

Ha −f T
1

H A f T
1 + 4f T

2
T1, T2 5f T

1
Ga 2f T

1 + 3f T
2

Ha 5f T
1
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Figure 8. Plots of some second-order RFs from the G ⊗ h JT subsystem.

The functions GM(�) can be obtained directly from table 2. A selection of the RFs are
displayed in figure 8, labelled a and b where

a = K
(2)
T1

(T1 ⊗ T1), K
(2)
T2

(T2 ⊗ T2), K
(2)
H (T1 ⊗ T1), K

(2)
H (T2 ⊗ T2)

b = K
(2)
A (T1 ⊗ T1), K

(2)
A (T2 ⊗ T2)

Finally, we determine second-order RFs for the G ⊗ (g ⊕ h) JT system for D3 wells.
These are given by

K
(2)
M (� ⊗ �) = − 1

108h̄ωh

t2

T 4

1√
1 + 2S

D3
12 + S

D3
13

GM(�). (53)

The functions GM(�) and the possible values of M and � which give non-zero values for
K

(2)
M (� ⊗�) are given in table 3. The results are expressed in terms of the quantities Fi where
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Table 2. The functions GM(�) used to define the second-order RFs for the G ⊗ h JT subsystem
involving D3d wells.

� M GM(�)

T1, T2 A 5(40f
D3
3 + 3f

D3
2 + 42f

D3
4 )s2 + 40(4f

D3
2 + f

D3
1 )s + 60f

D3
2

T1, T2 100(3f
D3
2 + f

D3
3 )s2 + 50(4f

D3
1 + f

D3
2 )s

H 100(3f
D3
2 + f

D3
3 )s2 + 50(4f

D3
1 + f

D3
2 )s

G A (23f
D3
2 + 232f

D3
3 + 216f

D3
4 )s2 + 8(3f

D3
1 + 14f

D3
2 )s + 48f

D3
2

T1 15(29f
D3
2 + 2f

D3
3 )s2 + 80(f

D3
1 + f

D3
2 )s

T2 15(29f
D3
2 + 2f

D3
3 )s2 + 80(f

D3
1 + f

D3
2 )s

Ga (319f
D3
2 + 76f

D3
3 + 41

2 f
D3
4 )s2 + 8(19f

D3
1 + 7f

D3
2 )s − 6f

D3
2

Ha 5(−f
D3
2 + 44f

D3
3 + 32f

D3
4 )s2 + 40(5f

D3
1 + 2f

D3
2 )s

H A 5(f
D3
2 + 8f

D3
3 + 18f

D3
4 )s2 + 160f

D3
2 s + 120f

D3
2

T1, T2 50(4f
D3
1 + f

D3
2 )s

Ga 5(−4f
D3
4 + 17f

D3
2 − 4f

D3
3 )s2 + 20(10f

D3
1 + f

D3
2 )s + 15f

D3
2

Ha
25
2 (5f

D3
2 + 2f

D3
3 + 2f

D3
4 )s2 + 25(2f

D3
1 + 5f

D3
2 )s + 75f

D3
2

Table 3. The functions GM(�) used to define the second-order RFs for the G⊗ (h⊕ g) JT system
involving D3 wells.

� M GM(�)

T1, T2 A 10(−F5 + 6F2)S
2T 2 + 40(F1 + 4F6)ST + 5(40F3 + 42F4 + 3F6)

T1, T2, H 25S2T 2F5 + 50(F6 + 4F1)ST + 100(3F6 + F3)

G A 4(−F5 + 12F2)S
2T 2 + 8(3F1 + 14F6)ST + (232F3 + 216F4 + 23F6)

T1, T2 20S2F5T
8 + 80(F6 + F1)ST + 5(87F6 + 6F3)

Ga 2(14F5 − 3F2)S
2T 2 + 8(19F1 + 7F6)ST + (76F3 + 41

2 F4 + 319F6)

Ha −20T 8S2F5 + 40(5F1 + 2F6)ST + 5(44F3 + 80F4 − F6)

H A 20(6F2 + F5)S
2T 2 + 160F6ST + 5(8F3 + 18F4 + F6)

T1, T2 125S2T 2F5 + 50(4F1 + F6)ST

Ga, Gb 5(3F2 + 23F5)S
2T 2 + 20(10F1 + F6)ST + 5(17F6 − 4F3 − 4F4)

Ha, Hb
25
2 (6F2 + 5F5)S

2T 2 + 25(2F1 + 5F6)ST + 25
2 (2F3 + 2F4 + 5F6)

Fi = f (yi) with

y1 = 5
54k2

g + 10
27k2

h

y2 = 5
27k2

g + 20
27k2

h

y3 = 10
9 k2

h

y4 = 5
54k2

g + 40
27k2

h

y5 = 5
36k2

g

y6 = 5
108k2

g + 20
27k2

h.

(54)

The energy difference is given by

E = − 5

108

(−4S
D3
12 + S

D3
13 )k2

g − 16(S
D3
12 − S

D3
13 )k2

h

(1 − 2S
D3
12 + S

D3
13 )

. (55)

Some of the second-order RFs are plotted in figure 7. When we set the kg = 0, all the above
expression can be simplified to the corresponding second-order RFs of the G ⊗ h subsystem.
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6. Discussion and conclusions

The G ⊗ (g ⊕ h) JT system and the associated G ⊗ g and G ⊗ h JT subsystems have been
studied in detail in order to obtain theoretical background information on the vibronically
coupled orbital quadruplet in icosahedral symmetry. Previously published work on these
systems has been severely limited in contrast to that on the T ⊗h and H ⊗ (g ⊕h) JT systems.
This is because the T and H electronic states form the ground states of the C−

60 and C+
60 ions

respectively. Nevertheless, the G− orbital state can appear as an excited orbital state of these
ions or of neutral C60. Excited states can be very important in some situations in which the
identification and modelling of experimental data is required. This can properly only be done if
the properties of the system have been clearly established, and this has been the aim of this paper.

One of the most productive mechanisms for interpreting experimental data involving G

states is likely to involve using an appropriate effective Hamiltonian in which perturbations are
expressed in terms of orbital and spin operators only, whilst the effects of the phonon spectrum
and their interactions appear as parameters in the form of RFs. Determination of the latter for
the G-orbital state has been the prime objective of this paper. Expressions for the first- and
second-order RFs for the wells in the G ⊗ (g ⊕ h) JT system (and corresponding subsystems)
have been calculated using symmetry-adapted ground states and excited states located in the
T and D3 minima.

In order to undertake the RF calculations, it was first necessary to find expressions for the
vibronic states. This was accomplished by first finding expressions for vibronic states localized
in wells in the APES and then introducing tunnelling by constructing linear combinations
of the well states, transforming with the appropriate symmetries, using projection operator
techniques. This method also ensures that the relative phases associated with each of the
well states is automatically correct and the Berry phase need not be explicitly included. The
energies corresponding to the resultant symmetry-adapted states were then calculated. As a
result, it was found that there is a region of coupling to the g and h modes for which the ground
state is a vibronic A state. Although this lies outside the range of validity of our results in
linear coupling, it does suggest the possibility that the ground state may actually be a vibronic
singlet if significant higher-order couplings are present. However, the inclusion of such terms
requires much extra work that is beyond the scope of this paper. Nevertheless, this observation
could have far-reaching consequences. Spectroscopic results indicating an A state would not
obviously suggest the presence of a G ⊗ (g ⊕ h) JT effect, even though this could be the
case. Furthermore, in the regimes where the A state is lowest, it will not be possible to model
the vibronic system by an effective Hamiltonian based on G states, as would otherwise be
expected. The situation should be compared to the H ⊗ (g ⊕ h) and H ⊗ h JT systems, for
which a ground-state crossover can occur in linear coupling.

The results presented in this paper should provide much of the information required to
model real JT systems derived from an electronic G state.
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